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Abstract
In this paper, we analyze how different information-processing architectures deal with conflicting information. A robust finding
in psychological research is that response times are slower when processing conflicting sources of information (e.g., naming the
color of the word RED when printed in green in the well-known Stroop task) than when processing congruent sources of
information (e.g., naming the color of the word GREEN when printed in green). We suggest that the effect of conflicting
information depends on the processing architectures and derive a new measure of information processing called the conflict
contrast function, which is indicative of how different architectures perform with conflicts at different levels of salience. By
varying the salience of the conflicting information source, we show that serial, parallel, and coactive information processing
architectures predict qualitatively distinct conflict contrast functions. We provide new analyses of three previously collected data
sets: a detection task with Stroop color-word stimuli and two categorization experiments. Our novel measure provides convergent
evidence about the underlying processing architecture in the categorization tasks and surprising results in the Stroop detection
task.
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When people make decisions, they are sometimes confronted
with sources that provide conflicting information. A driver
must slow down upon detection of a pedestrian crossing the
road, yet the traffic light could be green at the same time,
signaling to go. Conflicting information can take toll on per-
formance, in terms of error rate, response latencies, or both.
Perhaps the most prominent laboratory example of a decision
based on conflicting information is the Stroop task (e.g.,
Stroop 1935; Eidels et al. 2010): Naming the font color of a
word when the color and word are incompatible (e.g., the
word RED printed in green) is more difficult and takes more

time than if the word and its color match (GREEN printed in
green). Here, the word Bsource^ and the color source can
provide conflicting information as to the correct response. In
general and acrossmany psychological tasks, decisionmaking
is slower and more error prone when both sources are in con-
flict than when both sources provide congruent information.
In this paper, we examine how the human information pro-
cessing system resolves situations in which conflicting
sources of information point to different decisions.

The term conflict is colloquially used to describe a clash or
disagreement between opposing forces. For scientific rigor,
we need a more precise and specific definition for Bconflict^
between two stimulus dimensions. We draw on Livnat and
Pippenger’s (2006) game theoretic definition of conflict. The
basic idea is that two Bagents^ are in conflict if the utility
resultant from one agent’s Bbehavior^ could have been higher
if the other agent Bacted^ differently. In adapting this defini-
tion to cognitive process models, we treat each individual
stimulus dimension as an agent, with the behavior of that
dimension simply reflecting the value of the dimension (e.g.,
the value red on the word dimension, the value green on the
color dimension). Utility is a function of the decision that
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results from an observer extracting evidence from each dimen-
sion. In the present context, this decision depends on how the
dimensions are combined with respect to different experimen-
tal outcomes. For instance, in the standard Stroop task, the
decision to respond Bred^ to the print color occurs more quick-
ly and accurately given the word RED is printed in red than
given the word GREEN printed in red. Hence, the dimensions
of word and print color are in conflict in the latter example.
Livnat and Pippenger used this definition of conflict to de-
scribe many different types of internal and external conflict,
making it generalizable to the processing of multiple stimulus
dimensions.

Behavioral outcomes of processing conflicting information
are well studied in a variety of tasks. In stimulus-response
congruency tasks, such as the Stroop task (MacLeod 1991),
the Simon task (Proctor and Vu 2006; Simon and Rudell
1967), or the Flanker task (Eriksen and Eriksen 1974), one
source of information is relevant whereas a to-be-ignored sec-
ond source of information nonetheless interferes with
responding. In the categorization domain, two (or more)
sources of information could again be either in conflict or in
agreement. For example, a participant could be asked to clas-
sify a whale as either a mammal or a fish. Rule-based evidence
suggests that the biological properties of a whale make it a
mammal whereas similarity-based evidence suggests that a
whale lives in an environment typically populated by trout,
sharks, and a like, and is therefore a fish. Thus, while one
source of information provides the correct category, the other
source interferes with responding in a way which increases
errors and slows response time (Allen and Brookes 1991;
Folstein et al. 2008; Nosofsky 1991; Nosofsky and Little
2010).

The present paper aims to show that the nature of this
interference can be elucidated by considering how multiple
sources of information are integrated. In particular, we sys-
tematically examine the intimate relationship between con-
flicting sources of information and the system’s processing
architecture (e.g., serial vs parallel processing), focusing on
how conflicting sources of information affect response time
(RT). For instance, if both sources are processed
independently and in parallel, the processing time of a correct
decision should only be affected by how long it takes to pro-
cess the correct source (i.e., the minimum processing time);
consequently, the conflicting information should not affect
responding. By contrast, if the sources are pooled together
(into what we refer to as a coactive processing channel), the
conflicting information will slow responding. Finally, if pro-
cessing is serial, one attribute at a time, then the interference
will depend primarily on which source of information is proc-
essed first and how long each source takes to process.
Schematic illustrations of the three processing architectures
are presented in Fig. 1. Several popular models that had been
put forth to explain human performance in conflict tasks

assume that information from various sources is pooled in a
coactive (or similar) fashion. For instance, Logan (1980) pro-
posed that Stroop interference arises due to obligatory auto-
matic processing of words but effortful attentive processing of
colors. Each of the components is pooled to drive a common
random walk process which is used to generate the model’s
response time predictions. We show how conflicting informa-
tion can be used to inform inferences about the underlying
processing architecture in conflict (e.g., Stroop) and categori-
zation tasks, thereby allowing us to test some of the most
fundamental assumptions of current theories of these tasks.

Processing conflicting information is presumably more dif-
ficult and requires increased control demands when compared
to processing multiple sources of information that are not in
conflict. Increased control demands are reported to trigger a
shift from parallel to serial processing (e.g., Luria and Meiran
2005; Fischer and Plessow 2015; Dosher et al. 2010), yet
differentiating serial from parallel processes is a non-trivial
feat.

Determining whether multiple sources of information are
processed in serial or in parallel or in a coactive fashion is a
notoriously difficult problem because these models can mimic
the predictions of each other in a variety of tasks (Townsend
1990a). As a consequence, providing a new tool that can dif-
ferentiate these models is vital to the study of information
processing systems, and human cognition in general. In this
paper, we derive a novel measure of information processing,
the conflict contrast function (CCF), that can uncover the way

Fig. 1 Schematic illustration of the processing models considered in the
present work. Generalized predictions for what each of the models predict
when self-termination is possible (i.e., an OR task) are shown
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conflicting sources of information are processed and integrat-
ed. The key insight is this: By contrasting conflicting infor-
mation at differing interference levels1 (i.e., an easy conflict
and a hard conflict), one can differentiate between parallel,
coactive, and serial processing models because each of these
models predict a qualitatively different conflict contrast
function.

Before presenting the novel conflict contrast function, we
set up the scene and explain the notation via an example task
(a visual target detection task using Stroop stimuli; Eidels
et al. 2010). We then briefly survey a set of non-parametric
theoretical and methodological analyses known as Systems
Factorial Technology (SFT; Little et al. 2017; Townsend and
Nozawa 1995; Townsend andWenger 2004). Readers familiar
with SFTwill be able to skip this section. The SFT framework
offers RT-based measures that allow inferences about the
architecture of information processing (e.g., serial or parallel
or coactive), decisional stopping rules, the independence of
processing (decisions about each information source are made
without influence from the other information sources), and the
efficiency of processing (workload capacity or simply
capacity). Following a brief SFT overview, we present the
new conflict contrast function and a summary table with its
diagnostic predictions. Like existing SFT measures, the CCF
is a non-parametric index, meaning it makes no assumptions
about the specific distributions of processing times and is thus
general and powerful. The novel contrast function provides a
useful extension to the SFT set of tools in cases where various
information sources could be in conflict. We demonstrate the
practical benefits of the CCF by analyzing data sets from two
previously published conflict tasks and conclude by
discussing the interpretation of the current results in the con-
text of previous analyses.

Example Task with Conflicting Sources
of Information

Eidels et al. (2010; experiment 2) studied the processing
architecture of Stroop-like stimuli made of color words
printed in color. Participants were presented with a single
word (either RED or GREEN) printed in color (red or green)
and had to respond YES anytime the stimulus contained any
Bredness^ (i.e., if the display contained the word RED, the
print color red, or both), and respond NO otherwise (i.e., the
target absent display—word GREEN printed in the color
green). The values of the print color and the legibility of

the color word were varied to affect their discriminability,
as shown in Fig. 2. Accordingly, the four stimuli in the
bottom right-hand quadrant of the stimulus space contain
neither the word RED or red color, so require a NO re-
sponse. Importantly, both the color and the word need to
be evaluated to ensure that neither contains any redness.
Thus, the appropriate decision rule is termed an AND deci-
sion rule. Notice that this task is not an ordinary Stroop
variant; it encourages participants to allocate attention to
both color and word dimensions, in contrast to the classic
Stroop task in which observers are asked to focus attention
exclusively on the color and ignore the printed word.

The stimuli in the AND set are further distinguished by
how easy it is to determine the value of each dimension as
either red or green. For the AND set, we use the labels X
and Y for the word and color dimensions, respectively.
For each item, we use the subscripts H and L to indicate
the discriminability (high, low) on each of the dimen-
sions. For instance, the XHYH item has high discrimina-
bility on both the word and the color dimensions (in this
example, it would be a highly legible word GREEN and
the relatively saturated green color) so they are both easy
to tell apart from their (red) Brivals.^ The XLYH and XH

YL stimuli have high discriminability on one dimension
and low discriminability on the other dimension. The XL

YL stimulus has low discriminability on both dimensions
(i.e., the word is more difficult to read, and the font color
is more difficult to determine). Consequently, if both di-
mensions are processed, RTs should be slower for the LL
stimulus than the LH or HL stimuli, which in turn should
be slower than the HH stimulus.2 A complete glossary of
this terminology is provided in Table 1.

The remaining stimuli can be classified by noting that
they contain redness either on the word or on the color
dimension. Thus, they belong to a set defined by an OR
decision rule (see Fig. 2 again). The redundant stimulus
set, the word RED printed in red color, contains redness
on both dimensions. It is also, incidentally, a congruent
set (Eidels et al. manipulated this contingency in subse-
quent experiments). The incongruent stimuli (GREEN in
red, RED in green) contain redness on one dimension but
not on the other. In the discussion that follows, we denote
the redundant set AB with a subscript specifying the dis-
criminability of the word and the color dimension, respec-
tively. Hence, AHBH is an easy-to-read RED word pre-
sented in a highly saturated red color. The incongruent,
conflict stimuli are referred to as a mixture of A or B, to
indicate the component that satisfies the OR rule (i.e.,
redness), and X or Y, to indicate the component that1 We use the term Binterference^ to mean any manipulation that results in a

slower response time. This has been alternatively referred to stimulus salience
(Townsend and Nozawa 1995) or stimulus discriminability (Fific et al. 2010).
Zhang and Dzhafarov (2015) term this assumption prolongation. In the con-
text of information conflict, interference and stimulus discriminability are ap-
propriate terms for the strength of the distractor dimension.

2 HH could stand for XHYH or AHBH, LL stands for XLYL or ALBL, etc. We
drop the XY or AB when the stimulus discriminability matters but stimulus
content does not.
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satisfies the AND rule (i.e., Bgreenness^). Any AB or XY
item in Fig. 2 corresponds to a congruent stimulus, where-
as AY or XB labels correspond to an incongruent
(conflict) stimulus, with the same H and L subscripts in-
dicating the strength of each of the components. For in-
stance, a highly legible (easy to read) GREEN word in a
highly saturated red font color is termed XHBH. Hence, in
this experiment, the incongruent stimulus, XLBH, lies on a
horizontal (word) continuum between the incongruent
stimulus, XHBH, and the congruent stimulus, AHBH (cf.
Fig. 2). In this sense, the stimulus XLBH can be thought of
as more Bneutral^ than XHBH. Critically, the serial, paral-
lel, and coactive architectures each provide a different set
of RT predictions for how stimuli are processed in this
space (Fifić et al. 2010).

If processed in serial, the decisions concerning each dimen-
sion are completed one after the other, and the total RT for
items in the AND set is the sum of the RTs on each of the
dimensions. If processed in parallel, then the total RT for

AND set is the maximum of the RTs on each of the indepen-
dent dimensions. For the coactive model, we assume that rath-
er than making independent decisions on each dimension, the
decisions are driven by consideration of information pooled
from two dimensions.

A further consideration for serial and parallel models is
whether processing can self-terminate after processing one
of the dimensions or whether both dimensions must be proc-
essed exhaustively. The stopping rule should be logically
determined by the nature of the task; AND task requires
both channels to be completed for responses to be correct
so naturally calls for exhaustive processing, whereas the OR
task can be accomplished based on any one of the channels
alone, so self-terminating rule is in place. Empirically, how-
ever, that may not necessarily be the case (Bushmakin et al.
2017). For example, conservative observers may process all
incoming information in an OR task. Combining the stop-
ping rules with each of the model architectures (except for
the coactive architecture for which the self-terminating ver-
sus exhaustive distinction has no bearing) allows for quali-
tatively different predictions for all of the stimuli. The intu-
itions for these predictions have been described elsewhere
(Fifić et al. 2010; Little 2012; Little et al. 2011; Little et al.
2013; Moneer et al. 2016; Cheng et al. 2018); only a sum-
mary of the qualitative predictions is provided here. We
outline these known predictions for each of the models in
relation to two diagnostic measures developed within the
theoretical framework of Systems Factorial Technology.
These predictions can be then used in conjunction with the
CCF to provide a complete picture of processing.

Fig. 2 Example of the stimuli and schematic experimental design used in
Eidels et al. (2010; experiment 2). Observers were to respond yes if any
redness was detected in the stimulus or Bno^ otherwise (i.e., for the
GREEN in green stimuli). The bottom panel provides the nomenclature
that will be used throughout the article. Dimensional values which
provide correct evidence for the AND decision response (e.g., in the
lower right-hand corner) are labeled X and Y for the word and color
dimension, respectively (e.g., X refers to the case when the word green
is either a hard to read or easy to read. Y refers to the color green). The
legibility or saturation value is labeled with a subscript L or H for the low
and high discriminability values, respectively. Finally, the target
information (e.g., redness) is labeled A or B for the word red or the
color red, respectively

Table 1 Glossary of terms

1, 2 Stimulus dimensions; processing channels

AND, OR Response sets or categories

H, L High interference or discriminability; low
interference or discriminability

A, B Target information; information sources
which provide evidence for the OR set or
category response

X, Y Conflicting information sources which
provide evidence for the AND set or
category response

AB Redundant stimulus

AY, XB Incongruent target stimuli

MIC Mean interaction contrast

SIC Survivor interaction contrast

MRT Mean response time

F(t) Cumulative probability distribution

S(t) Survivor function (1 − F(t))
f(t) Probability density function

CCF Conflict contrast function
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Systems Factorial Technology: Mean
and Survivor Interaction Contrast

SFT is a model identification framework developed by
Townsend and colleagues (Townsend 1972; Townsend and
Ashby 1983; Townsend and Nozawa 1995; see Algom et al.
2015 or Altieri et al. 2017 for an overview). SFT provides a
number of measures that can be readily estimated from em-
pirical data. Critically, several models of interest (such as
those illustrated in Fig. 1) make unique predictions within this
framework, so the measures can be conveniently used to tell
apart competing accounts. The first measure is best illustrated
using Fig. 2. Because the stimulus space in the figure contains
a factorial combination of stimulus discriminability on each
dimension, we can compute the mean interaction contrast
(MIC) and the survivor interaction contrast for the AND cat-
egory stimuli. The MIC is calculated as

MIC ¼ MRTLL−MRTLHð Þ− MRTHL−MRTHHð Þ; ð1Þ
where MRT is the mean response time and the subscripts
denote specific stimulus conditions (see Fig. 2). In general,
serial self-terminating models predict MIC = 0 in both the
AND and the OR conditions, parallel self-terminating models
predict an overadditive MIC (i.e., MIC > 0) in the OR condi-
tion and an underadditive MIC (MIC < 0) in the AND condi-
tion (i.e., because processing is forced to be exhaustive), and
coactive models predict and overadditive MIC in both
conditions.

Greater diagnostic power is afforded by the survivor inter-
action contrast (SIC), which is computed the same way as the
MIC, except using the survivor functions, S(t), for each facto-
rial stimulus instead of mean RT:

SIC ¼ SLL tð Þ−SLH tð Þð Þ− SHL tð Þ−SHH tð Þð Þ ð2Þ

The survivor function is one minus the cumulative
response-time distribution function (cdf), S(t) = 1 − F(t), and
the subscripts again denote the experimental condition (see
Fig. 2). SIC is a function over time, and SICs for each of the
models take on qualitatively different functional forms. As
evident in Fig. 3, the SIC can differentiate between self-
terminating and exhaustive stopping rules in addition to the
different architectures (Townsend and Nozawa 1995).

In summary, using the design shown in Fig. 2, Eidels et al.
(2010) applied the diagnostic analyses of Systems Factorial
Technology to make inferences about the type of architecture
that underlies processing of Stroop color-word stimuli.
However, the application of the MIC and SIC measures was
limited to the congruent AB and XY cases (RED in red and
GREEN in green; Fig. 2). The current paper extends the anal-
ysis to the AYand XB incongruent cases (GREEN in red and
RED in green). More broadly, we develop and present the

conflict contrast function as a general tool for diagnosing sys-
tems that process conflicting sources of information, Stroop
and non-Stroop alike. In this example data, we also use the
SIC to provide independent, converging evidence to our novel
CCF, which we introduce next.

Conflict Contrast Function

Much like the SIC, the CCF is a contrast between two sets of
stimuli (in the Stroop example, combinations of words and
colors) that have components which vary in their conse-
quences for response times. For the CCF, the target informa-
tion (i.e., information that provides evidence for the correct
response) is held constant and the conflicting information is
varied from low to high discriminability on both stimulus
dimensions. The conflict contrast function is expressed as
the sum of the differences between log survivor functions of
the high and low conflicting information on each stimulus
dimension, as follows3:

CCF tð Þ ¼ log SAYH tð Þð Þ−log SAYL tð Þð Þð Þ
þ log SXHB tð Þð Þ−log SXLB tð Þð Þð Þ: ð3Þ

SAYH , SAYL , SXHB, and SXLB are the survivor functions for
the AYH, AYL, XHB, and XLB item conditions, respectively
(see Fig. 2). As shown in the Appendices, the CCF is a useful
tool for model diagnosis: The conflict contrast function pre-
dicts a value of 0 for all t for a parallel, self-terminating model;
a value greater than 0 for a coactive model; and a value less
than 0 for serial self-terminating, serial exhaustive, and paral-
lel exhaustive models. These predictions are summarized in
Table 2. Thus, the conflict contrast function is a novel tool that
allows differentiation of an important class of processing
models. The formal derivation of this function is provided in
Appendix 1; Appendix 2 provides a more intuitive explana-
tion for why these predictions hold. Appendix 3 shows how to
implement the CCF (in pseudocode) along with a diagram
showing precisely how the item conditions map to the equa-
tion in our first application. These predictions follow from
similar considerations to the theory of capacity with
distractors, termed resilience, and the resilience difference
function, introduced by Little et al. (2015; Houpt and Little
2016; see also Cheng et al. 2017, for a review).

To illustrate the usefulness of the conflict contrast function,
consider the OR set of the Stroop detection task in Fig. 2. To
respond correctly, an item needs to be perceived as either
consisting of the word RED, or the color red, or both. When
presented with, say, stimulus AYL—the word RED printed in
an unsaturated green color—the color in this stimulus

3 We drop the subscript on A and B because the level of this dimension does
not matter so long as it is consistent across both A and B.
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conflicts with the word. Importantly, for item AYL, analyzing
source Y (i.e., the color) alone does not allow an observer to
respond accurately; however, under certain models, source Y
can influence how quickly the correct decision can be made.
For an intuitive example, a serial system attempting to detect
the presence of redness (e.g., in the word RED in green) that
processes color first and then word cannot finish as soon as the
processing of the low-quality green color was completed, but
rather must await the processing of the RED word to respond.
Thus, although the green color attribute does not determine
the response, it has a direct effect on its time course (namely,

slow down). A serial system that starts with the word and then
moves on to process color, on the other hand, can yield a quick
(and correct) Byes^ response as soon as the processing of the
RED word is accomplished. The conflict contrast function is
sensitive to such processing differences.

Armed with our novel theoretical analyses, demonstrating
how conflicting dimensions affect the CCF differentially for
each of our candidate processing models (see Table 2 for a
summary of models’ predictions), in the remainder of this
article, we compute the CCF for published data from (a) target
detection Stroop task previously reported in Eidels et al.
(2010) and (b) a number of previously published categoriza-
tion studies that all utilized stimulus space akin to that shown
in Fig. 2 (but with different stimulus dimensions and instruc-
tions: Little et al. 2011, experiment 1; Little et al. 2013, ex-
periment 1).

In each of the tasks, the original report presented evidence
concerning the information processing architecture using the
MIC or SIC measure (along with computational modeling
confirming that evidence). The original measures were calcu-
lated from one set of items (for instance, the AND set in Fig.
2); here, we show that the CCF provides complementary ev-
idence using a completely different set of items (e.g., the OR

Fig. 3 Survivor interaction
contrast (SIC) predictions for
each of the candidate
architectures

Table 2 Important processing models and their conflict contrast
function predictions

Model Conflict contrast function (CCF) prediction

Coactive CCF(t) > 0

Parallel, self-terminating CCF(t) = 0

Parallel exhaustive CCF(t) < 0

Serial self-terminating CCF(t) < 0

Serial exhaustive CCF(t) < 0
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category). In the Stroop detection task, where processing ap-
pears to be serial, the CCF is less than 0. In the categorization
tasks, we demonstrate that when the dimensions are separable
(i.e., dimensions which can be analyzed individually; Garner
1974) and the results are well described by a serial self-
terminating model (or a mixture of serial and parallel self-
terminating models in the case of spatially overlapped stimu-
li), the CCF is less than 0 as predicted. By contrast, when the
dimensions are integral (i.e., dimensions which are thought to
be processed holistically; Garner 1974) and the results are well
described by a coactive processing model, the CCF is greater
than 0.

Application I: Conflict Contrast Function
Analysis of a Stroop Detection Task

Consider the opening example again: A driver approaching an
intersection must monitor the traffic lights as well as any
crossing vehicles or pedestrians. Either signal (red light, pe-
destrian crossing) is sufficient to propel a breaking response.
Attention thus needs to be split, or divided, across multiple
sources of information, and a suitable laboratory
demonstration should reflect this requirement, while
presenting observers with signals that could conflict or not.
Eidels et al. (2010) tested participants’ performance in a stan-
dard Stroop task and a divided attention Stroop detection task.
The stimulus set for both tasks was the same, the words RED
and GREEN printed in red or green color. In the standard
Stroop task, participants were asked to focus exclusively on
one source of information (print color) and ignore the other
(content of word), as is the case in scores of Stroop studies. In
a separate session, participants were again presented with
Stroop color-word stimuli, but instructed to divide their atten-
tion (Brespond YES if you detect the word RED or the color
red^). This task is an ideal testbed for the CCF as (i) it presents
observers with two sources of information that are both rele-
vant, and hence requires divided attention, and (ii) the sources
could be in conflict (e.g., RED in green) or not (RED in red).
We used this task in a previous section to illustrate how to
compute the new CCF. We use it again now to compute CCF
from empirical data. Specifically, we calculate CCF from data
previously collected by Eidels et al. (exp. 2).

The CCF is a new development that was not available to
Eidels and colleagues. However, as shown in Fig. 2, which
depicts their original design, there are high-discriminability
and low-discriminability conflict items in each condition.
This allows us to compute the CCF function at each level of
target salience.

First, we calculated whether there is a Stroop effect present
in this task. Since the task required detecting the presence of
redness of any kind, the congruent stimulus would be one in
which the observer had to detect redness in the word RED

printed in red color, and the incongruent stimulus would be
the word GREEN printed in red. If we average the means of
the highly saturated and fully visible combinations (e.g., AH

BH and XHBH, see Fig. 2) across the five observers in this task,
the congruent stimulus (M = 355.38 ms, SD = 54.90) is faster
than the incongruent stimulus (M = 396.7 ms, SD = 96.18), as
expected. The means of each observer are also in the same
direction. As discussed by Eidels et al. (2010) and Eidels
(2012), this difference could be driven by congruency (e.g.,
as expected by many Stroop models that assume cross-
channel interference; the coactive model is an extreme exam-
ple; Eidels et al. 2011) but could also be driven by statistical
facilitation or redundancy, in a system with completely sepa-
rate channels for color and word processing (e.g., as in a
parallel race model). The remaining analyses speak to this
theoretical question.

Eidels et al. (2010) calculated SICs for the redundant-target
and no-target conditions (RED in red and GREEN in green,
respectively; both incidentally congruent). Their primary find-
ing was that word and color of congruent displays (the redun-
dant RED in red) were processed in parallel. They could not,
however, examine processing on conflicting conditions (the
single-target, incongruent displays: RED in green and
GREEN in red) since the SIC is not suitable for this purpose.
Processing conflicting information is presumably more diffi-
cult and requires increased control demands, which in turn
trigger a shift from parallel to serial processing (e.g., Luria
and Meiran 2005). By applying the novel CCF to a set of
target-present items containing conflicting information, we
can uncover the time course of processing conflicting word
and colors. As summarized in Table 2, parallel processing
implies CCF = 0 whereas serial processing implies CCF < 0.

Method and Results

Eidels et al. (2010; experiment 2) tested five observers in the
task illustrated in Fig. 2. On each trial, a single word printed in
color was displayed on the screen and the observer had to
press a designated yes key if she detected the word RED,
the color red, or both. Otherwise, if no redness was detected
(i.e., GREEN in green), the observer had to press the no key.
The stimulus set comprised 16 items—the factorial combina-
tions of the words RED and GREEN in high and low discrim-
inability (i.e., each printed in high and low level of legibility)
crossed with the print colors red and green in high and low
discriminability (saturation). Dimensional discriminability
was matched after extensive pilot testing, such that the differ-
ence in response latencies between high and low quality of the
word was about the same as that between high and low color
salience. Each stimulus was presented 400 times over five
successive 1.5-h sessions. Full details of the method are pro-
vided in that paper.
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Figure 4 shows the CCF(t) functions at each level of target
discriminability. Regardless of whether target discriminability
was high or low, the contrast of the conflicting dimension
resulted in a CCF(t) function less than zero. This indicates that
the color and word attributes on incongruent, conflict displays
were processed in serial (with either self-terminating or ex-
haustive stopping) or parallel (exhaustive) processing (cf.
Table 2). Either way, the immediate implication is that the
redundant, non-conflict trials (i.e., RED in red) enjoy a
privileged status: They afford a benefit to processing by
allowing independent parallel, self-terminating processing
(as reported in Eidels et al.), whereas the presence of conflict
information in the incongruent trials (greenness, in this case)
results in inefficient processing, regardless of whether it ap-
pears in the word or the print color, and regardless of the
response associated with the item.

We highlight the value of the CCF analysis by pointing out
that one could observe behaviorally that congruent stimuli
were processed faster than incongruent stimuli (355 vs
397 ms, as we reported above), but this observation affords
little information about the reasons for this difference. The
CCF(t) function allows researchers to assess the latent

processing characteristics (architecture, stopping rule) of in-
congruent, conflict items.

Summary

The new analyses of the Eidels et al. (2010) Stroop data pro-
vide insight into how architecture varies across different item
types in a Stroop detection task (see Fig. 2). The CCF allows
us to uncover the processing characteristics of incongruent
conflict trials. We found that a complex pattern of architecture
that shifts from (i) parallel self-terminating with redundant OR
information to (ii) serial self-terminating, serial exhaustive, or
parallel exhaustive processing with incongruent information
to (iii) serial exhaustive processing with the target-absent
AND items. The nuanced and subtle interaction between the
response rule and the combination of stimulus dimensions is
inconsistent with most existing models (see our BDiscussion^
section below).

The conflict contrast function can be used with a variety of
tasks and stimuli. In the next section, we analyze data from a
categorization task that uses a similar AND-OR design as the
Stroop detection task. In these experiments, computational
modeling reported in the original papers indicated that pro-
cessing was consistent across all of the items. The aims of the
CCF analysis of these data are threefold: (a) to provide con-
vergent non-parametric evidence to the existing parametric
results; (b) to provide a counterpoint to the Stroop detection
task, demonstrating a case where the interaction of stimulus
components and response rules is more straightforward; and
finally (c) to further demonstrate how the CCF complements
existing measures such as the SIC.

Application II: Conflict Contrast Function
Analysis of Logical Rule Studies
of Categorization

We indicated earlier that some psychological tasks, as
well as everyday life decisions, require processing of sev-
eral stimulus attributes or dimensions at the same time
(divided attention, e.g., Bis my date both clever and good
looking?^), whereas others require processing of certain
dimension(s) but not others (selective attention, e.g., Bis
car A more reliable than car B irrespective of their
color?^). If only one target dimension is relevant, then
in theory, attention can shift away from the distracting
dimension and ignore the conflicting information (empir-
ical data suggests differently; slower responses to the in-
congruent displays on the classic Stroop task imply selec-
tive attention could fail). But on those instances where the
conflicting information is relevant, successful models of
categorization, such as Nosofsky and Palmeri’s (1997)
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Fig. 4 The red lines show the conflict contrast function (CCF) results for
five observers from Eidels et al. (2010; experiment 2). The blue lines
above and below are two bootstrapped standard errors. The left-hand
panels show the CCF(t) results when the target information was of high
salience, and the right-hand panels show the CCF(t) results when the
target information was of low salience
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exemplar-based random walk model (EBRW), assumes
that some attention is given to the conflicting information.
A key feature of models like EBRW, and the other prima-
ry categorization models of RT, such as stochastic general
recognition theory (Ashby 2000), distance-from-boundary
models (Ashby and Gott 1988), and simple diffusion
models (Ratcliff 1978), is that all of the attention-
weighted information is pooled into a single processing
channel, which is often termed coactive (see Fig. 1 again
for an illustration of a coactive architecture). Recently,
across a number of studies, it has been demonstrated that
a dichotomous characterization is more appropriate; stim-
uli comprised of integral-dimensioned stimuli were well
described by the assumption of coactivity, whereas stimuli
comprised of separable dimensions were not (Fifić et al.
2008, 2010; Little et al. 2011; Little et al. 2013).

Little et al. (2011; experiment 1; see also Fifić et al.
2010; experiment 1) instructed observers to classify stim-
uli made of separable dimensions that were presented in
different spatial locations. The category space was similar
to the Stroop detection design with the exception that
fewer stimuli were presented in the OR set (see Fig. 5).
The dimensions for judgment were presented as part of
the same object (e.g., base width and top curvature of
lamp silhouettes, see Fig. 6). In this experiment,

processing was best explained by a serial , self-
terminating model. In another study, observers classified
stimuli comprised of integral dimensions (Little et al.
2013; experiment 1; see also Fifić et al. 2008). Contrary
to the separable dimension study, processing was best
explained as a coactive process. Here, we calculate the
new CCF(t) measure to two distinct data sets, a separable
data set (Little et al. 2011) and an integral set (Little et al.
2013); we expect the CCF(t) to be a sensitive measure and
uncover different architectures for the different sets—se-
rial for the former and coactive for the latter, as identified
previously (see right-most column of Fig. 6). Extensive
model comparisons conducted in the original papers indi-
cated that both the AND category and the OR category
could be handled by the same underlying architecture (se-
rial self-terminating for the separable set and coactive for
the integral set). Consequently, we expect the CCF(t) to
lead to the same inference as the SIC, unlike our applica-
tion to the Stroop stimulus data.

Method and Results

The results reported in this section are based on new anal-
yses of data collected in previous studies by Little et al.
(2011, 2013). Specific details about the method, as well as
mean RT results and error rates, are presented in the orig-
inal papers. The pertinent stimulus space is presented in
Fig. 5.

In order to investigate how the conflict contrast function is
related to architecture in categorization tasks, we present in
Figs. 7 and 8 the previously developed SIC(t) along with our
newly developed CCF(t). The SICs are diagnostic of architec-
ture and decisional stopping rule and consequently can be
used to relate architecture across performance on both the
AND and OR category items.

Separable Dimensions The results in Fig. 7 show that par-
ticipants clearly demonstrated serial SIC functions.
Further analyses and modeling reported in Little et al.
(2011) were also consistent with serial, self-terminating
processing. Examination of the CCF(t) functions in Fig.
7 reveals that the CCF(t) are less than zero in all cases,
commensurate with serial self-terminating, serial exhaus-
tive, and parallel exhaustive models (thus allowing to re-
ject parallel self-terminating and coactive models). In at
least one of the cases, the bootstrapped 95% confidence
intervals overlap 0 for the CCF(t) indicating larger vari-
ability for that observer.

Integral Dimensions For the integral dimensions studied in
Little et al. (2013; experiment 1), the SIC functions con-
sistently support coactive processing in agreement with

Fig. 5 Schematic illustration of the category structure used in the
categorization experiments. There are three values for each dimension 1
and 2, combined orthogonally to produce the nine members of the
stimulus set. The stimuli in the upper right quadrant of the space are the
members of the AND category, whereas the remaining stimuli are the
members of the OR category. For the AND category, H and L refer to
the high- and low-discriminability dimension values, respectively. The
OR category stimulus that satisfies the disjunctive OR rule on both di-
mensions is denoted as the redundant (AB) stimulus. The remaining OR
stimuli are indexed as a combination of one dimension value which sat-
isfies one of the OR rules (either A for dimension 1 or B for dimension 2)
and a dimension value which provides evidence for the AND category (X
for dimension 1 and Y for dimension 2). The subscripts H and L for the
OR category stimuli reflect whether the conflicting information provides
evidence for the AND category of high or low salience, respectively. For
example, the OR stimulusAYL provides onlyweak evidence for theAND
category on dimension 2 (i.e., because this dimension is close to the
horizontal boundary on dimension 2)
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the analyses and modeling reported in that paper (see
Fig. 8).4 All of the reported analyses indicated coactivity
for all participants in this experiment (see Little et al.
2013). Likewise, the CCF(t) in Fig. 8 are greater than 0
for all subjects, providing converging evidence for coac-
tive processing of these stimuli.

Summary The results confirm that the CCF(t) provides a novel
contrast between serial, parallel, and coactive models. The
results provide evidence against a coactive processing model
as a viable explanation for the processing of separable stimu-
lus dimensions (Fig. 7). As discussed in Fifić et al. (2010), this
result effectively rules out most of the prominent models of
categorization RT as explanations for the processing of sepa-
rable dimensions. For instance, models such as the EBRW
(Nosofsky and Palmeri 1997), stochastic general recognition
theory (Ashby 2000), and the extended generalized context
model (Lamberts 2000) each assume that the stimulus dimen-
sions are pooled into a single processing channel. While our
results show that this explanation works for integral dimen-
sion stimuli (Fig. 8), it is not appropriate for separable
dimensions.

Taken together with other qualitative contrasts, such as the
SIC, the CCF measure provides a powerful, non-parametric
diagnostic tool for analyzing information-processing systems.
This inference would not be available without the develop-
ment of the CCF. The CCF complements the existing SIC-
based inference and expands it. It is not a different

transformation of the same data but is rather calculated from
different conditions of the experimental design that have been
underutilized to date.

General Discussion

In this paper, we developed and applied a novel modeling tool
to uncover how conflicting sources of information are proc-
essed in the cognitive system. Conflict between various
sources of information is a common aspect of many psycho-
logical tasks, although it is more obvious in some tasks than in
others. For instance, in the Stroop task, the notion of congru-
ency and conflict is obvious due to the matching and
mismatching nature of the color and word attributes. More
generally, conflict arises whenever two sources of information
provide evidence supporting two (or more) opposing re-
sponses. This can occur in psychological tasks where, for
example, a category judgment requires integration of multiple
stimulus dimensions, each governed by different rules or dif-
ferent types of similarity, or it can happen in real-world judg-
ments where the validity of a given source may be uncertain.

We demonstrated that different architectures (serial, paral-
lel, and coactive, with an associated stopping rule) differ in the
way they are affected by conflicting information. Namely, the
correct RT predictions of parallel models are unaffected by
conflicting information; serial models are slowed more by
weaker conflicting evidence, and coactive models are slowed
more by strongly conflicting evidence. We derived a novel
measure of information processing, the CCF(t), that makes
qualitatively different predictions for standard versions of
these models, and thus serves as a useful diagnostic tool for
cognitive models.

We reported two applications of the CCF to existing data
sets, one that served for validation purposes and the other
analyzing conditions that could not have been utilized before,
revealing surprising results. We validated the CCF(t) by com-
paring it to previous categorization studies that used other
non-parametric measures of information processing (Little
et al. 2011, 2013; described in application II). The agreement

4 The two exceptions are the negative deflection in the SIC at longer ts for
observer 3 and the lack of a small initial deflection for observer 4. For observer
3, we note that examination of the cdfs indicated a violation of stochastic
dominance at the same time, t, as the negative deflection in the SIC. That is,
for observer 3, at around 800 ms, the cdf for the LL stimulus crosses over the
cdf for the LH stimulus, thereby violating the assumed ordering of RT distri-
butions. This violation of stochastic dominance renders the latter part of the
SIC function uninformative for this subject. Nonetheless, the early part of the
SIC function is consistent with coactivity. For observer 4, the lack of an initial
small negative deflectionmight tempt one to conclude that processing is in fact
parallel and self-terminating. A parallel, self-terminating model would exhibit
a completely positive SIC function (see Fig. 3); however, we note that this is
unlikely because the target category requires exhaustive processing.
Consequently, we suspect that the lack of an initial negative deflection is due
to the lack of differentiation between the response time cdfs for fast RTs.

Fig. 6 Example of the stimuli
used in the presently examined
categorization experiments
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between these measures indicates that the CCF(t) comple-
ments the set of existing tools (Townsend and Nozawa’s
1995 mean and survivor interaction contrasts), which were
also capable to differentiate the standard models. In addition,
we extended the investigation of the underlying properties of
the cognitive system to cases that could not be studied using
existing non-parametric contrasts. Specifically, we showed
how the CCF(t) could be applied to previously unharvested
data cells in a conflict task. In the Stroop detection task devel-
oped by Eidels et al. (2010), subjects were presented with

color names printed in color and had to detect the presence
of redness in either the word or color dimensions. The existing
contrasts, MIC and SIC, delivered evidence in favor of paral-
lel self-terminating processing of color and word information,
but could not be applied to the conflict conditions (i.e., RED in
green and GREEN in red displays). The surprising result that
the CCF and the SIC disagree leads us to conclude that the
architecture or stopping rule changes when conflict is detect-
ed. That is, application of the new CCF to the conflict condi-
tions revealed an architecture that is either serial or parallel-
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Fig. 7 Results from Little et al.
(2011; experiment 1). Each row
shows the results for a single
observer. The first column shows
the SIC (the red line is the SIC;
the solid horizontal line marks the
zero point for all t), and the
second column shows the CCF(t)
function. In the SIC and CCF(t)
panels, the blue lines show two
standard error non-parametric
bootstrapped confidence
intervals. The solid horizontal line
in the CCF(t) panel shows the
predictions of the baseline
unlimited capacity independent
parallel model (e.g., CCF(t) = 0)
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exhaustive, suggesting a staggering architecture change when
moving from the processing of non-conflict to conflict dis-
plays (possibly due to increased control demands, Luria and
Meiran 2005). Some caution should be taken since this infer-
ence is post hoc, and future work should consider what pro-
cesses allow for this type of switching to occur.

The key benefit of the CCF(t) over existingmeasures is that
it requires only varying the salience of one of the experimental
factors at a time rather than both factors simultaneously as for
the MIC and SIC. This constrained variation, of one factor at a

time, is typical in many experimental situations. For instance,
in stimulus-response congruency like the Simon task, it is
common to systematically vary the degree of conflict by alter-
ing the location of the stimulus (which is irrelevant to deter-
mining the response), but holding the cue to response (e.g., the
color of the cue) constant. Future research could apply the
CCF to divided attention versions of Simon task or and other
conflict tasks.

The additional analyses conducted here allowed a more
detailed understanding of performance in conflict tasks and
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Fig. 8 Results from Little et al.
(2013; experiment 1). Each row
shows the results for a single
observer. The first column shows
the SIC (the red line is the SIC;
the solid horizontal line marks the
zero point for all t), and the
second column shows the CCF(t)
function. In the SIC and CCF(t)
panels, the blue lines show two
standard error non-parametric
bootstrapped confidence
intervals. The solid horizontal line
in the CCF(t) panel shows the
predictions of the baseline
unlimited capacity independent
parallel model (e.g., CCF(t) = 0)
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provided additional constraints for theoretical explanations of
these tasks. In the remainder of the article, we briefly discuss
the theoretical implications of the CCF for models of various
conflict tasks. We then discuss the relation of the new CCF
measure to two other related applications: the mean RT pre-
dictions for the OR category items in the logical rule tasks
reported by Fifić et al. (2010) and the workload capacity co-
efficient developed by Townsend and Nozawa (1995). We
conclude by discussing potential limitations of the CCF and
possible remedies.

Models of Conflict Tasks

Many models of conflict tasks are best characterized as coac-
tive in that they assume information is pooled across sources
to some degree (though see Teodorescu and Usher 2013 for an
alternative conception of conflict and competition between
sources of information). We have mentioned Logan’s (1980)
theory of Stroop interference, but this is also true of other
theories of Stroop performance. For instance, Cattell’s
(1886, as cited inMacLeod 1991) relative speed of processing
theory assumes that words are read faster than colors are
named and interference arises because the word and color
compete for the response (see also Posner and Snyder 1975;
Treisman 1969). Cohen et al. (1990) developed a parallel dis-
tributed processing model in which the activation of the font
color and the color word are differentially weighted by the
task demands (i.e., selectively attending to the color dimen-
sion) and summed to determine the activation of each of the
possible responses (e.g., red or green), which in turn drives
evidence accumulation in competing response accumulators.
Melara and Algom (2003) introduce an information-based
theory of Stroop interference in which variable perceptions
are filtered through short-term memory and attention to acti-
vate long-term memory representations, which in turn drive
accumulation of evidence to a threshold. By contrast, our
analysis suggests that the task demands of processing incon-
gruent stimuli lead to a shift from parallel (when congruent) to
serial processing (when incongruent) of Stroop stimuli.

Models of other tasks, such as the Simon task, can also be
characterized as coactive. For example, in Yamaguchi and
Proctor’s (2012) multidimensional vector model of the
Simon task, stimuli are coded as points representing the values
of the relevant color information and the irrelevant position
information compared projected onto a variable decision axis.
Due to variability in the decision axis orientation, this repre-
sentation is equivalent to signal detection theory (Green and
Swets 1966). The integral of the distribution function (area
under the curve) up to a criterion is used to drive a counting
process which is used to predict the response times. Themodel
predicts slower response times for incongruent information
than congruent information because the former has a smaller
probability of accumulating evidence for the correct response

than the latter. Hence, like models of the Stroop task, infor-
mation in the multidimensional vector model is pooled into a
single decision process and can be classified as coactive (see,
e.g., Fifić et al. 2010).

Models of the flanker task are also best characterized as
coactive. For instance, Logan (1996; see also Logan 2002a)
examined the predictions of Bundesen’s TVA model (Btheory
of visual attention,^ an independent parallel race model;
Bundesen 1990) on the flanker task and showed the model
predicted increased error rate but no effect of conflicting
flankers on RT. To deal with the discrepancy between TVA’s
predictions and the empirical results, Logan modified TVA by
allowing stimulus information to drive a single counter pro-
cess (Logan 1996) or a random walk process (Logan 2002a).
More complex information accumulation models have been
developed since, yet these models also involve pooling of
information into a single channel. For example, White et al.
(2011) proposed a shrinking-spotlight model in which the in-
formation driving the evidence accumulation processes in-
cludes the conflicting information at the start of the trial, but
the influence of the distracting information is gradually re-
duced as attention focuses on the target.

To summarize, these different models characterize informa-
tion processing toward a decision in different ways, but all of
the models assume that information is pooled into a common
decision mechanism. Consequently, these models can all be
classed as coactive processing models. Whereas most models
of the conflict tasks have focused on the detailed specification
of mechanisms that produce certain patterns of RTs, an alter-
native approach, which we adopt here, is to consider the fun-
damental predictions for whole classes of models (Logan
2002b; Townsend and Nozawa 1995; Townsend and Wenger
2004). This meta-theoretical approach can then be used to
derive non-parametric predictions allowing some model clas-
ses to be ruled out. For instance, our analysis of the Stroop
data rules out pure coactive processing since the processing of
incongruent stimuli is best captured by serial processing. One
interpretation of this result is that the divided attention task
leads to different types of processing than in the standard
selective attention Stroop task. Alternatively, fast detection
of conflict might trigger the initiation of control processes that
result in a different strategy for categorizing incongruent stim-
uli compared to congruent stimuli.

Relation to Mean RT Predictions

Fifić et al. (2010) introduced the mean RT predictions for
the OR category items in the categorization design shown in
Fig. 5. These predictions follow the basic logic of the
CCF(t) model predictions that we derive here. Using simu-
lations and intuitive explanations of the models, Fifić et al.
showed that parallel self-terminating models predict no dif-
ference in the mean RTs between the conflicting stimuli for
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any level of conflict salience, whereas serial models predict
that low levels of conflict salience will be slower than high
levels of conflict salience.5 Coactive models predict that
low levels of conflict salience will be faster than high levels
of conflict salience. It is not clear from their paper, however,
whether these predictions are contingent on specific param-
eter settings of the models. It is therefore useful to consider
how we might relate the mean RT predictions to the CCF’s
predictions. Townsend (1990b) showed that if HA(t) >HB(t)
for all t, then FA(t) > FB(t) for all t, where H(t) is the inte-
grated hazard function (i.e., − ln(S(t))) and F(t) is the cumu-
lative distribution function of response times. This in turn
implies that mean (TA) < mean (TB), where T is the random
variable for response times and the subscript indicates the
condition. We note that FA(t) > FB(t) also implies that SA(t)
< SB(t), and taking the logarithm of the survivor function
does not change the ordering (for any 0 < S(t) < 1), so
log[SA(t)] < log[SB(t)]. Likewise, log[SA(t)] < log[SB(t)] im-
plies that FA(t) > FB(t) and, consequently, mean (TA) < mean
(TB). Hence, if log[SH(t)] > log[SL(t)], then mean (TH) >
mean (TL) and vice versa. We can then write a mean conflict
contrast function, MCCF(t), as

MCCF tð Þ ¼ MAYH−MAYLð Þ þ MXHB−MXLBð Þ;
where MAYH is the mean RT for stimulus condition AYH.

Of course, averaging the two high-salience conflict items
and the two low salience conflict items does not change the
qualitative direction of the difference, so finding the mean RTs
and testing whether theMCCF is different from zero, by using
an independent samples t test, would allow a simplemethod of
statistically evaluating the contrast. Such an approach was
employed by Little et al. (2013) to argue that integral stimulus
dimensions are processed coactively, but separable dimen-
sions are processed independently. The CCF generalizes this
approach to the entire response time distribution, and relevant
statistical tests can be generalized from the related capacity
and resilience functions (Houpt and Little 2016).

Relation to Workload Capacity

As detailed in the Appendix 1, our derivation of the CCF starts
from the assumption that parallel, self-terminatingmodels pre-
dict that the observed RT for a redundant target stimulus (e.g.,
AB) should be equal to the minimum derived from two single
targets (e.g., AYand XB). Townsend and Nozawa (1995) used

this property as a baseline in their derivation of a measure of
the workload capacity of an information-processing system.
Their measure assesses how processing efficiency changes
between cases where the system is processing one target
(e.g., A or B alone) compared to cases where the system is
processing two or more target signals (e.g., AB). Unlike the
traditional approach to understanding capacity, which opera-
tionally defines capacity as a single number capturing the
amount of information that can be stored in or manipulated
by the cognitive system (e.g., Kahneman 1973), Townsend
and Nozawa’s capacity coefficient is a function that describes
the efficiency of the processing system over the entire time
course of processing.

Like the CCF, the capacity function of a parallel, indepen-
dent self-terminating model is unaffected by the number of
targets to process; this property is termed unlimited capacity.
Under certain assumptions, serial models, which process in-
formation sequentially, predict limited capacity because in-
creasing the number of the to-be-processed items slows down
the overall processing time of the system (e.g., Townsend and
Ashby 1983). By contrast, coactive models, which pool to-
gether information from multiple processing channels, predict
super-capacity because increasing the number of items to be
processed speeds up the overall processing time beyond what
is expected by independent-parallel processing (Townsend
and Nozawa 1995; Townsend and Wenger 2004).

Although the CCF and Townsend’s workload capacity
function may look close in form, the capacity coefficient can-
not be applied directly to the example data in the studies ex-
amined here since the Bsingle targets^ are Bcontaminated^ by
conflicting information. The predictions of the capacity coef-
ficient take into account only the change in load, from one
target to two (or more) targets. Onewould need to consider the
properties of the capacity coefficient when the single targets
are not presented in isolation but rather contain additional
information. In general, the presence of conflicting informa-
tion could change the derived minimum-time predictions of a
system, making it either easier or harder for the redundant
targets to exceed it. Consequently, the diagnosticity of the
capacity coefficient for architecture would likely break down
in the presence of conflicting information. Nonetheless, one
could Bsalvage^ the function by contrasting the capacity func-
tion when the non-target dimension was of high and low
salience in the same manner that we apply here. Such an
approach is described in Little et al. (2015; Houpt and Little
2016) in their derivation of the resilience function. Cheng
et al. (2017) present converging results to our application II
using the resilience difference function.

Limitations of the CCF(t)

Like all modeling exercises, our present analysis relies on a
number of key assumptions which may not hold in all

5 These predictions may not be generally true but apply to the categorization
design in Fig. 5. For instance, Teodorescu and Usher (2013) studied competi-
tion between dynamically varying luminance patches where the decision was
to determine which patch had on average the higher brightness. In their task,
varying the level of competition could change the RT predictions of the par-
allel model. To make their task commensurate with ours, one would need to
examine two pairs of patches with the outcome of the brightness decision on
each pair being combined using a logical decision gate.

14 Comput Brain Behav (2018) 1:1–21



situations. For instance, like the capacity coefficient (Townsend
and Nozawa 1995) or the related race model inequality (Miller
1982; Townsend and Eidels 2011), the CCF requires context
invariance (i.e., that the target information—A or B—does not
change its processing rate depending on the other information
that is presented with it; see Colonius 1990; Townsend and
Eidels 2011). This assumption may be easily violated in many
situations (see Yang et al. 2018). To take one pertinent example:
For the categorization tasks that have been studied in the pres-
ent article, Fifić et al. previously developed a set of cognitive
processmodels in which the rate of processing is determined by
the volume of a perceptual distribution which lies in each cat-
egory region (i.e., as in multivariate signal detection theory;
Ashby and Gott 1988). The assumption of context invariance
would imply that the marginal distributions for, say, dimension
A were equal across all levels of the other dimension. This
assumption is known as perceptual separability. Violations of
this assumption via either mean shift (i.e., a change in the mean
location of A with levels of the other dimension) or variance
shift (i.e., a change in the variance of Awith levels of the other
dimension) would result in different rates of processing for A at
different levels of the other dimension (Cheng et al. 2017).
Consequently, the CCF(t) function can also reflect violation
of context invariance in this way.

We also require selective influence (Schweickert et al.
2009; Townsend and Nozawa 1995) of the different levels of
salience of the conflicting dimensions. This means that, when
tested alone, the high salience conflict dimension should elicit
faster RTs than the low salience conflict dimension such that
the survivor functions are ordered for all t (i.e., SH(t) < SL(t)).
Of course, this property cannot be readily assessed from per-
formance on the incongruent target stimuli (i.e., containing
target information and conflicting information) because the
ordering of these stimuli will depend on the processing archi-
tecture. This is, of course, what determines the diagnosticity of
the conflict contrast function. This means that assessing this
assumption would require independent evidence of the speed
at which individual dimensions are processed. However, we
feel this assumption is relatively mild since varying the dis-
criminability of any dimension will change the RTas has been
demonstrated empirically many times (Link 1992; Luce 1986;
Johnson 1939; Piéron 1914, 1952).

Finally, we apply the present analyses only to data from
correct responses. The reason for this is twofold: First, in the
tasks presented here, error rates are often unaffected by con-
flict whereas RTs are substantially slower. Consequently, our
presentation of the CCF mirrors the initial development of the
workload capacity coefficient, which was initially developed
to account for correct RTs (Townsend and Nozawa 1995) and
only later extended to error RTs (Donkin et al. 2014;
Townsend and Altieri 2012). Second, considerations for how
a serial or a parallel model predict error responses is compli-
cated by the fact that the failure of a single decision process

may ormay not lead to an error response. For instance, if one’s
task is to respond Bmammal^ to the question of whether a
whale is a mammal or a fish, if ANY of the sources of infor-
mation (e.g., biological or similarity-based) leads to a mam-
mal outcome, then the response will terminate incorrectly only
if the biological-based source fails but the similarity-based
source does not. Other combinations of failures will still result
in a correct response. Consequently, predicting errors for in-
formation processing models with more than one decision
component is more complex than in simpler decisions (e.g.,
Laming 1968; Ratcliff 1978; Ratcliff and Rouder 1998). In
fact, redundancy of information allows for complicated error
recovery processes which we are trying to model in a different
line of work. Nonetheless, the types of conflict that we exam-
ine in this paper are likely to increase error rates in many
situations, particularly in cases where there are speed and ac-
curacy tradeoffs.6 We consider the development of error RT
predictions for more complex mental architectures to be of
paramount importance; however, we leave this development
as a challenge for future research.
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Appendix 1 Derivation of Conflict Contrast
Function

Starting from the minimum time relationship implied by the
parallel processing model:

SAB tð Þ ¼ SAY tð Þ � SXB tð Þ
where S(t) is the survivor function for stimulus conditions AB
(congruent target) or AY or XB (incongruent target), one can
take the negative logarithm to convert these functions to inte-
grated hazard functions (see, e.g., Luce 1986; Townsend and
Nozawa 1995). Rearranging the function then gives for an
unlimited capacity, independent, parallel self-terminating
model:

1 ¼ −log SAY tð Þ � SXB tð Þ½ �
−log SAB tð Þ½ �

In the present case, we term this function the inverse OR
capacity plus distractors function (ICPD) and note that the
relationship between the derived minimum time and the ob-
served redundant target time is exactly the opposite of what is
expected under Townsend and Nozawa’s (1995) capacity

6 We thank Philip Smith for highlighting this issue.
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function. That is, if the derived minimum time is slower than
the observed redundant target time, then the ratio on the right
will be less than 1, but if the derived minimum time is faster
than the observed redundant target time, then the ratio on the
right will be greater than 1.

The key diagnostic contrast occurs when the distractor is
high salience and when the distractor is low salience.

ICPDdiff tð Þ ¼ ICPDH tð Þ−ICPDL tð Þ

¼ −log SAYH tð Þ � SXHB tð Þ½ �
−log SAB tð Þ½ � −

−log SAYL tð Þ � SXLB tð Þ½ �
−log SAB tð Þ½ �

If we allow the negative sign to cancel out and multiply
through by log[SAB(t)], then this leaves us with the difference
between the log product of the survivor functions for the high
and low salience single targets plus conflict sources.

log SAB tð Þ½ � � ICPDdiff ¼ log SAYH tð Þ � SXHB tð Þ½ �−log SAYL tð Þ � SXLB tð Þ½ �

¼ log SAYH tð Þð Þ þ log SXHB tð Þð Þ−log SAYL tð Þð Þ−log SXLB tð Þð Þ

¼ log SAYH tð Þð Þ−log SAYL tð Þð Þð Þ þ log SXHB tð Þð Þ−log SXLB tð Þð Þð Þ

Hence, the diagnostic predictions are given by the sum of
the difference between the high and low salience distractors
on each dimension.

We term this function the conflict contrast function:

CCF tð Þ ¼ log SAYH tð Þð Þ−log SAYL tð Þð Þð Þ
þ log SXHB tð Þð Þ−log SXLB tð Þð Þð Þ

The properties of this function provide qualitative distinc-
tions between serial, parallel, and coactive processing models
if the following assumptions hold:

1. The processing rate of stimulus dimension A and B do not
vary as a function of the other dimensional value. This
assumption is known as context invariance (Colonius
1990; Townsend and Eidels 2011).

2. The RT of the high salience conflict dimension is faster
than the low salience conflict dimension for all t. This
assumption is known as stochastic dominance
(Schweickert et al. 2009; Townsend and Nozawa 1995).

Appendix 2 Intuitive Predictions for Each
of the Processing Models

Parallel, Independent, Self-Terminating Model

If processing is parallel self-terminating and each chan-
nel (e.g., 1 or 2) is processed independently, then the

RT is determined by the minimum channel processing
time. That is,

Fparallel
12 tð Þ ¼ 1− 1−F1 tð Þ½ � � 1−F2 tð Þ½ �ð Þ; ð4Þ

which gives the cumulative distribution function for the
minimum time distribution (or alternatively, in terms of

the survivor functions, Sparallel12 tð Þ ¼ S1 tð Þ � S2 tð Þ ). Note
that for stimuli containing conflicting information, pro-
cessing the conflict sources X and Y does not allow one
to make a correct response; only the target sources A
and B allow one to correctly respond (e.g., in the
categorization task shown in Fig. 2). In other words,
the independent, parallel self-terminating model is un-
perturbed by the presence of conflicting information.
Hence, the above equation when applied to stimulus
AYL (or AYH) reduces to

Fparallel
AYL

tð Þ ¼ 1− 1−FA tð Þ½ � � 1−FYL tð Þ½ �ð Þ
¼ 1− 1−FA tð Þ½ �

1−Fparallel
AYL

tð Þ ¼ 1−FA tð Þ
SparallelAYL

tð Þ ¼ SA tð Þ
ð5Þ

In words, this means that the survivor function for a given
dimension A, SA(t), is the same irrespective of the value or
presence of the distractor in the other dimension. The same
relationship holds for stimuli XLB and XHB. Hence, the dis-
criminability of the conflicting source does not matter, and the
CCF function equals 0:

CCFparallel tð Þ ¼ log SAYH tð Þð Þ−log SAYL tð Þð Þð Þ þ log SXHB tð Þð Þ−log SXLB tð Þð Þð Þ

¼ log SA tð Þð Þ−log SA tð Þð Þð Þ þ log SB tð Þð Þ−log SB tð Þð Þð Þ ¼ 0

Serial, Self-Terminating Model

The RT probability density function (pdf) of a serial, self-
terminating model for the incongruent target stimuli are

f serialAY tð Þ ¼ p f A tð Þ½ � þ 1−pð Þ f Y tð Þ*f A tð Þ½ � ð6Þ
and

f serialXB tð Þ ¼ p f X tð Þ*f B tð Þ½ � þ 1−pð Þ f B tð Þ½ �; ð7Þ
where fA(t) and fB(t) are the pdfs associated with processing
correct sources A and B, and fX(t) and fY(t) are the pdfs asso-
ciated with processing the conflicting sources X and Y. AY
and XB are the stimuli comprising one correct source and one
conflicting source. Under a serial, self-terminating model, the
pdf for these stimuli is a mixture of trials on which one dimen-
sion is processed first (with probability p) and other trials in
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which the other dimension is processed first (with probability
1 − p). On some of these trials, the first processed dimension
will provide evidence for the OR set response (i.e., when A or
B is processed first) allowing the decision to terminate. On
other trials, the conflict information (i.e., X or Y) will be
processed first requiring the remaining dimension to be proc-
essed before the decision can be terminated accurately. For
instance, if one processes the environmental properties of
whales first, then the decision will not be able to terminate
accurately until the second dimension, biological properties, is
processed.

For a serial self-terminating model, the discriminability of
the conflicting information matters. The high discriminability
conflict dimension should not slow down the stimulus as much
as the low discriminability conflict dimension. To explain, in
the conflict conditions (i.e., the incongruent stimuli), if the high
discriminability distractor is faster than the low discriminability
distractor (i.e., SYH < SYL ) and if the processing rate of A (or
B) does not depend on the other dimension, then SAYH tð Þ ¼
SAYL tð Þ if p = 1 and SAYH tð Þ < SAYL tð Þ if p < 1 because 1−∫
f YH

tð Þ*f A tð Þ� �
dt < 1−∫ f YL

tð Þ*f A tð Þ� �
dt, and analogously

for stimuli XHB and XLB. Hence, since SAYH tð Þ≤SAYL tð Þ and
SXHB tð Þ≤SXLB tð Þ, then the inequalities also hold for the log
of the survivor function and CCFserial(t < 0).

For the latter inequality to hold, we require that the assump-
tions stated above hold for all t. Namely, we require that SYH

tð Þ < SYL tð Þ and SXH tð Þ < SXL tð Þ indicating an effective ma-
nipulation of conflict discriminability (i.e., the high discrimi-
nability conflict presented alone provides stronger evidence
for AND category than the low discriminability conflict pre-
sented alone). Note that we only require the ordering of sur-
vivor functions for the conflicting information (i.e., the high
conflict on its own should be faster than the low conflict on its
own; this may generally not be true if the high or low conflict
is paired with the target information source, A or B). This
assumption is typically termed stochastic dominance and is
a crucial underlying assumption of techniques based on the
manipulation of salience to uncover information processing
architecture (Schweickert et al. 2009; Townsend and
Nozawa 1995). The second assumption is that the processing
rate of the target information (i.e., the A component of AYH

and AYL and the B component of XHB and XLB) does not
vary as a function of the salience of the conflicting informa-
tion. This assumption is termed context invariance (Colonius
1990; Townsend and Eidels 2011) and plays an important role
in techniques aimed at uncovering the capacity of information
processing. Here, we combine both of these assumptions.

Coactive Processing Model

The intuition for the prediction of a coactive model when
dealing with conflicting information is that the rate of

processing will be slowed down more by high discrimina-
bility target than by a low discriminability target; conse-
quen t ly, SAYH tð Þ > SAYL tð Þ and SXHB tð Þ > SXLB tð Þ and
CCF > 0. To explain, consider the effect of pooling together
two conflicting information sources. The final rate of pro-
cessing will depend on the relative strengths of each of these
sources of information. The higher the discriminability of
the conflicting source, the slower the rate of accumulation
of evidence for the correct OR category response. Different
versions of this pooling process have been proposed.
Townsend and Nozawa (1995) applied their proofs to a ver-
sion of a counter model which pooled counts from different
sources into a single decision process. Houpt and Townsend
(2011) proved that the same diagnostic measures held for a
coactive model based on the Weiner diffusion model (e.g.,
Ratcliff 1978). Likewise, Fifić et al. (2010; see also Ashby
2000) proposed a process model in which the area under a
bivariate normal distribution in the OR category region pro-
vided evidence for a sequential sampling model which de-
termined the RT associated with each stimulus. (This is
contrasted with serial and parallel models in which indepen-
dent sequential sampling models are driven by the marginal
normal distributions along each dimension). The high dis-
criminability incongruent stimuli were predicted to be
slower for the coactive model because more of the bivariate
normal distribution overlapped with the AND category and
not the OR category compared to the low discriminability
incongruent stimuli. The CCF function shows that this rela-
tionship will hold for any coactive model so long as the
assumptions of stochastic dominance and context invari-
ance are met.

Exhaustive Processing Models

In a parallel exhaustive model, all sources must be processed
to completion regardless of whether the target source has fin-
ished processing. The cumulative density functions of the in-
congruent targets are FAY(t) = FA(t) × FY(t) and FXB(t) = FX

(t) × FB(t).
In a serial exhaustive model, like a parallel exhaustive

model, all sources must be processed regardless of whether
the target source is processed first or not. The RT density
functions for the incongruent targets are fAY(t) = fA(t) ∗ fY(t)
and fXB(t) = fX(t) ∗ fB(t). fAB(t) = fA(t) ∗ fB(t), where the * sym-
bol indicates the convolution integral of the two target
densities.

For both exhaustivemodels, because of the stochastic dom-
inance relationship between the high and low salience con-
flicting sources, the low discriminability conflict source will
slow down the incongruent targetsmore than the high discrim-
inability conflict source. Hence, in both cases, SAYH tð Þ <
SAYL tð Þ and SXHB tð Þ < SXLB tð Þ and CCF < 0.
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Appendix 3 Tutorial on Using the Conflict
Contrast Function

A number of good tutorials have been recently published on
the application and use of Systems Factorial Technology
(SFT). We direct the reader to chapters by Algom et al.
(2015), Altieri et al. (2017), and Harding et al. (2016) along
with the comprehensive volume on SFT (Little et al. 2017).
Along with the original theorems (Townend and Nozawa
1995; Townsend and Wenger 2004), these papers cover the
underlying theory along with updated developments in SFT.
However, they do not necessarily address hands-on use of the
analyses. Houpt et al. (2014) have released an [R] package

(sft) and comprehensive tutorial on using SFT. The sft library
includes commands for computing the SIC (sic) and the CCF
(conflict.contrast), along with associated statistical tests for
these measures and others (see Houpt and Townsend 2010,
2012; Houpt and Little 2016). In this appendix, we provide
pseudocode to illustrate the processing pipeline using
preprocessed data to plot the SIC and CCF functions to create
the figures for application 2. Our GitHub page contains the
full data and analysis code (in MATLAB) for all of the anal-
yses in this paper: https://github.com/knowlabUnimelb/
CONFLICT_FUNCTION.

In the following Fig. 9, we analyze a datafile that has been
preprocessed to remove outlying RTs and error RTs. We

% Data matrix
data = [item, rt]

% Create separate vectors for each item condition
HH = rt[item == ‘HH’]
HL = rt[item == ‘HL’]
LH = rt[item == ‘LH’]
LL = rt[item == ‘LL’]
AYH = rt[item == ‘AYH’]
AYL = rt[item == ‘AYL’]
XHB = rt[item == ‘XHB’]
XLB = rt[item == ‘XLB’]
AB = rt[item == ‘AB’]

% Set up a vector of time bins
mint = min(min(rt), 5)
maxt = max(rt) + 100
t = mint:10:maxt

% Compute CDF for each target item condition
% hist is a function which counts the rts in each bin of t
cdf.HH = cumsum(hist(HH, t))/length(HH)
cdf.HL = cumsum(hist(HL, t))/length(HL)
cdf.LH = cumsum(hist(LH, t))/length(LH)
cdf.LL = cumsum(hist(LL, t))/length(LL)

% Compute the survivor function for each target item
S.HH = 1 – cdf.HH
S.HL = 1 – cdf.HL
S.LH = 1 – cdf.LH
S.LL = 1 – cdf.LL

% Compute SIC 
SIC = S.LL – S.HL – S.LH + S.HH

% Bootstrap confidence intervals for SIC
for i = 1:nBootStrapSamples

% Randomly sample with replacement a new set of rts for 
each item

boot.HH = sampleWithReplacement(HH, length(HH))
boot.HL = sampleWithReplacement(HL, length(HL))
boot.LH = sampleWithReplacement(LH, length(LH))
boot.LL = sampleWithReplacement(LL, length(LL))

% Compute S for new bootstrapped data
Sboot.HH = 1-cumsum(hist(boot.HH, t))/length(boot.HH)
Sboot.HL = 1-cumsum(hist(boot.HL, t))/length(boot.HL)
Sboot.LH = 1-cumsum(hist(boot.LH, t))/length(boot.LH)
Sboot.LL = 1-cumsum(hist(boot.LL, t))/length(boot.LL)

SICboot[:,i] = Sboot.LL – Sboot.HL – Sboot.LH + Sboot.HH
end

% Compute standard deviation of bootstrapped samples [along the columns]
stdSIC = std(SIC, 2) 

plot(t, sic)
plot(t, 2 * stdSIC + SIC)

% Compute CCF
% Compute CDF for each conflict item condition

Fig. 9 Psuedocode implementation of the SIC and CCF
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assume a data file with two columns: one indexing the rele-
vant condition (i.e., HH, HL, LH, LL, AYH, AYL, XHB, XLB,
AB; see Fig. 5 for reference) and another with the response
time (RT). We demonstrate the calculation of the empirical
survivor function using a histogram method, although other
estimation methods are possible (e.g., ecdf, kernel density
estimation, censored survivor functions). Figure 10 shows a
schematic of how the item conditions from the design corre-
spond to the CCF analysis.
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